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An enhanced thermal conduction model for predicting convection dominated solid–liquid phase change
is presented. The main feature of the model is to predict (1) the overall thermal behavior of the system
and (2) the phase front position without recurring to the full solution of the Navier–Stokes equations. The
model rests entirely on the conduction equation for both the solid and liquid phases. The effect of con-
vection in the melt is mimicked via an enhanced thermal conductivity that depends on the dimensionless
numbers and the geometry of the flow. The model is tested and confronted to full CFD solutions for a
freezing duct flow problem and for buoyancy driven melting in an enclosure. In both cases, the predic-
tions of the enhanced thermal conduction model show excellent agreement with that of the CFD model.
Not only is the enhanced thermal conduction model simpler to implement but its simulations run at least
ten times as fast as those of the CFD model. Consequently, the enhanced thermal conduction model is
well suited for controlling real-time solid–liquid phase change processes that occur in industrial applica-
tions as well as in latent heat thermal energy storage systems.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

For more than two decades now, convection dominated solid–
liquid phase change problems have been the subject of many
investigations in the open literature. The interest for these prob-
lems stems from their wide range of applications, chiefly in metal-
lurgy and material processing and in latent heat energy storage
systems. Recent work in these fields is reported in Refs. [1–10].

Numerical simulation of convection dominated phase change
problems is a challenging task. Not only are these problems
strongly nonlinear, i.e., the fluid flow in the melt dictates the heat
transfer, but they also involve moving boundaries, i.e., the solid–li-
quid interface. Since the heat transfer coefficient at the moving
front is, in general, not known, the coupled energy equations in
the solid and liquid phases, together with the conservation equa-
tions of mass and momentum in the melt, must be solved. As a re-
sult, even the numerical solution for the simplest convection
dominated phase change problem involves complex and time-con-
suming calculations (see the review of Hu and Argyropoulos [11]).
Different numerical approaches are available for solving the heat
transfer and fluid flow during solid–liquid phase change. These
strategies rest on either interface tracking methods (moving grids)
or on enthalpy methods (fixed grids) [12–14]. Sometimes however,
ll rights reserved.
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performing these lengthy calculations is simply impractical. This is
the case, for instance, when one envisages to control high temper-
ature melting furnaces over long periods of time [8] or to predict
the thermal behavior of latent heat thermal energy storage sys-
tems that are operated cyclically [9]. It is obvious that in these
real-time situations, the complete picture of the flow field is not re-
quired and that the computational procedure must be simplified in
order to provide quick results to be fed back to the control system.

One interesting way to simplify the computational procedure is
to abandon the calculation of the melt flow (i.e., the mass and the
momentum equations are no longer solved) and to account for the
effect of convection in the melt via an enhanced thermal conduc-
tivity in the energy equation [15]. This approach has been em-
ployed in the past for predicting the thermal behavior of melting
furnaces and that of energy storage systems [7–9].

In spite of the success of this strategy, none of the above studies
has addressed the question of how to choose the appropriate en-
hanced thermal conductivity. In fact, most of the time, the melt
conductivity is simply adjusted empirically so as to match the
numerical predictions with the experimental data.

The present paper addresses this question. It is shown that the
enhanced thermal conductivity of the melt may be formulated in
terms of directional thermal conductivity components and that
their values may be correlated in terms of dimensionless numbers
obtained from an order of magnitude analysis. The proposed ap-
proach is then tested for two different test cases. The first test case
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Nomenclature

Amush mushy zone constant
cp heat capacity, J kg�1 K�1

D spacing, m
H height, m
f liquid fraction
g gravitational acceleration, m s�2

h heat transfer coefficient, W m�2 K�1

k thermal conductivity, W m�1 K�1

k
0

directional pseudo-thermal conductivity associated
with convection, W m�1 K�1

L length, m
Nu Nusselt number
Pe Péclet number
Pr Prandtl number
q heat transfer rate, W
Ra Rayleigh number
s solid–liquid interface position, m
Sf source term
Ste Stefan number
t time, s
T temperature, K
T
0

temperature fluctuation, K
u, v, w velocity components, m s�1

v0 velocity fluctuation, m s�1

U inlet velocity, m s�1

x, y, z Cartesian coordinates, m

Greek symbols
a thermal diffusivity, m2 s�1

b coefficient of thermal expansion, K�1

c small number
eH eddy thermal diffusivity, m2 s�1

k latent heat, J kg�1

m dynamic viscosity, m2 s�1

q density, kg m�3

g algebraic coefficient

Subscripts
bc cold
en enhanced
h hot
L liquidus
m melting
S solidus
w wall
x, y, z direction
1 inlet

Superscripts
� dimensionless quantity
– average
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is devoted to forced convection dominated solidification in a duct
while the second test case is concerned with buoyancy dominated
melting in an enclosure.

2. Mathematical formulation and closure problem

In the following section, the fundamentals of the enhanced con-
ductivity approach are derived for a laminar flow. We begin by
gathering the convection terms in the energy equation along with
the conduction terms in the following way:

qcp
@T
@t
¼ @

@x
k
@T
@x
� qcpuT

� �
þ @

@y
k
@T
@y
� qcpvT

� �
þ @

@z
k
@T
@z
� qcpwT

� �
þ Sf ð1Þ

Sf is a source term that accounts for the latent heat released or
absorbed when phase change takes place. For instance, in the well-
known phase change porosity-enthalpy method [1], Sf reads as

Sf ¼ �qk u
@f
@x
þ v @f

@y
þw

@f
@z
þ @f
@t

� �
ð2Þ

where the local liquid fraction f is defined as

f ¼
0 T < TS

T�TS
TL�TS

� �
TS < T < TL

1 T > TL

8><>: ð3Þ

The term Sf is non-zero only in the mushy zone, i.e., in the re-
gion where latent heat is released or absorbed. The terms of
the form kð@T=@jÞ � qcpujT (with j = x,y, z) in Eq. (1) represent
the net energy flow in the j-direction and can be related in 2D to
the so-called heat function [16,17].

The next conceptual step is to recognize that, in some cases, we
may not be concerned with the exact velocity and pressure profiles
in the melt. This is especially true in problems for which only the
overall thermal behavior of the system is sought or in problems
for which only the knowledge of the solid–liquid interface position
is required (e.g., melting furnace, latent heat storage system).
Therefore, we rewrite Eq. (1) as

qcp
@T
@t
¼ @

@x
kþ k0x
� � @T

@x

� �
þ @

@y
kþ k0y
� � @T

@y
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@z

� �
þ Sf ð4Þ

The directional thermal conductivities associated with convec-
tion in the x, y, and z directions, i.e., k0x, k0y and k0z, are defined as

k0x ¼
qcpuT
@T=@x

���� ���� k0y ¼
qcpvT
@T=@y

���� ���� k0z ¼
qcpwT
@T=@z

���� ���� ð5Þ

In the solid phase, the velocity components are zero, and conse-
quently k0x ¼ k0y ¼ k0z ¼ 0.

For a better understanding of the fundamentals of the en-
hanced conductivity approach, it is instructive to recall that the
above formulation is akin to that of the time-averaged conserva-
tion equations for turbulent flows [16]. The eddy thermal diffu-
sivity that appears in the energy equation for turbulent flows is
a function of the local fluctuations in the temperature and in
the velocity components. For example, the eddy diffusivity in a
thermal boundary layer is eH ¼ �v 0T 0=ð@T=@yÞ [16]. The closure
problem is then to find the relation between the averaged fluctu-
ations and the time-averaged dependent variables. This is the
realm of turbulence modeling. Based on experimental observation
[16], Prandtl’s mixing length approach yields an algebraic model
for the thermal eddy diffusivity of the form eH ¼ �K2y2j@�T=dyj,
where K is an empirical constant of order 1. This model is simple
and has been applied successfully to a wide range of boundary
layer flows. It is, however, dependent on the geometry and it fails
to provide accurate results when the flow separates from the
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wall. More general turbulence models such as the k � e model are
available but they are more complex and they involve the solu-
tion of time-consuming nonlinear differential equations.

It is assumed, in the present study, that the directional thermal
conductivities associated with convection (k0x; k0y, and k0z) play a
role similar to that of the eddy diffusivity in turbulence modeling.
The problem then is to find a relation between the directional con-
ductivities and the geometry of the flow. To achieve this goal, Pra-
ndtl’s approach is retained. A simple algebraic model, based on a
scale analysis, is first proposed and its empirical constants are
determined with precision from CFD simulations and experimental
data. The main steps of the overall strategy are summarized in
Fig. 1. Once the algebraic relations are established, they can be
used straightforwardly in a wide range of situations.

Before presenting the test cases, we emphasize the fact that the
enhanced conduction approach is a numerical method for perform-
ing quick calculations of convection dominated heat transfer prob-
lems. It is not a substitute for CFD calculations. The enhanced
conduction approach provides an estimate of the overall thermal
behavior of systems and as a result, it is well suited for controlling
real-time solid–liquid phase change processes that occur in indus-
trial applications.

3. Test case 1: freezing duct flow

To illustrate the utilization of the enhanced conduction model
in convection dominated phase change problems, we first consider
the simple case of laminar freezing flow in a duct, as shown in
Fig. 2. A phase change fluid (here, we consider the molten metal
gallium) at temperature T1 enters a channel of height H and length
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Fig. 1. Comparison between the modeling of (a) turbulence and (b) phase change
problems.
L at a velocity U1. The solidification temperature of the fluid is Ts

and the walls of the channel are maintained at a temperature Tw

(Tw < Ts < T1). As heat is lost through the boundaries, a solid layer
grows on the walls. The problem that we address here is to predict
the time evolution of the solid–liquid interface. This is done first,
with a full CFD model and, second, with the proposed enhanced
conduction model. Both models are presented in the following
sub-sections and their predictions are confronted in Section 4.

3.1. CFD model

In the CFD model, the flow is determined by solving the com-
plete set of Navier–Stokes equations. The results of the CFD model
are then used as a basis of comparison for the enhanced thermal
conduction model described in Section 3.2.

Assuming that the fluid is Newtonian with constant properties
and that the flow is laminar, the mass, momentum and energy
equations for the CFD model may be stated as
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where Pr is the Prandtl number (Pr ¼ m=a ¼ 0:018 for gallium) and
PeL is the Péclet number (PeL ¼ U1L=a). The other dimensionless
variables and numbers are defined as

~x; ~y ¼ x; y
L

~u; ~v ¼ u;v
U1

~t ¼ t
L=U1

~p ¼ p
qU2

1

eT ¼ T � Tw

Tm � Tw
ð10Þ
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k
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1
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eSA ¼
Lð1� f 2ÞAmush

qU1ðf 3 � cÞ ð11Þ

Note that for the freezing duct flow problem, natural convection
is neglected, i.e., Ra = 0 in Eq. (8).

The source terms eSA in the momentum Eqs. (7) and (8) are used
to drive the velocity components to zero inside the solid phase. The
latent heat stored or released during phase change is accounted for
via the source term eSf in the energy Eq. (9). The dimensionless
temperature at the walls is set at eT ¼ 0. The inlet temperature is
fixed at 2 and the solidification temperature is fixed at 1. A uniform
velocity profile is imposed at the inlet while the no-slip boundary
condition is invoked at the walls.

The above set of differential equations was discretized using a
finite-volume method [18] and the resulting sets of algebraic equa-
tions were solved numerically with a commercial CFD package
[19]. Convergence, at a given time step, was declared when the
residuals, for each conservation equation, had decreased by 4 or-
ders of magnitude (6 for the energy equation).

The computational procedure was tested for grid and time step
independence. The mesh was refined until further grid density
doubling resulted in overall liquid fraction �f that differ by less than
1% from mesh i to mesh i + 1, i.e.,

�f iþ1 � �f i

�f i

�����
����� < 1% ð12Þ
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Fig. 2. Schematic representation of a channel flow with solidification on the walls.

Table 1
An example of mesh independence study for the complete CFD model (H/L = 0.6).

Mesh ReL = PeL/Pr = 1000 ReL = PeL/Pr = 2000 ReL = PeL/Pr = 3800

�f i jð�f i � �f i�1Þ=�f ij (%) �f i jð�f i � �f i�1Þ=�f ij (%) �f i jð�f i � �f i�1Þ=�f ij (%)

20 � 6 0.595 – 0.731 – 0.799 –
40 � 12 0.534 11.50 0.647 12.86 0.736 8.583
80 � 24 0.503 6.05 0.617 4.89 0.693 6.258
160 � 48 0.476 5.73 0.601 2.72 0.681 1.722
320 � 96 0.456 4.52 0.594 1.11 0.677 0.516
640 � 92 – – 0.593 0.27 0.679 0.325
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Fig. 3. Predicted ~km values for matching the predictions of the enhanced conduc-
tion model with those of the CDF model.
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Similarly, the time step was varied until further time step
reduction resulted in overall liquid fraction changes smaller than
1%. A mesh comprising 320 � 96 cells and a dimensionless time
step of 0.1 were found to satisfy these requirements for the range
of Peclet numbers and H/L ratios considered in this study (see Table
1).

3.2. Enhanced thermal conduction model

In the enhanced thermal conduction model, convection heat
transfer in the melt is mimicked via an augmented thermal con-
ductivity. Referring to Section 2, the parameter that characterizes
this model is the ratio of the x to y-overall directional conductivity
components:

~ken ¼
kþ k0x
kþ k0y

ð13Þ

In view of Eq. (5) and of the geometry shown in Fig. 2, the cor-
rect scale for the x- conductivity associated with convection in the
x direction is k0x � qcpU1L where k0y << k0x. Both, the thermal and
the velocity boundary layers grow on the walls. Since Pr << 1, the
thermal boundary layer is much thicker. As a result, v ? 0 in most
of the melt and hence k0y ! 0. Thus, the enhanced thermal conduc-
tivity ratio in Eq. (13) is expected to scale as

~ken � 1þ U1L
a
¼ 1þ PeL ð14Þ

~ken is proportional to the Péclet number of the flow for thin banks.
However, as the cross-section of the channel decreases, the ratio of
the thickness of the solid layer to the channel height increases and,
from the mass conservation principle, the x-velocity scale in the
channel becomes larger than U1. As a result, s=H � Pe�1=2

L =ðH=LÞ
and u � U1H=s and the enhanced thermal conductivity may be
rewritten as

~ken � 1þ Pe1=2
L

H=L
¼ g1 þ g2

Pe1=2
L

H=L
ð15Þ

where g1 and g2 are constants of order 1, i.e., g1, g2 = O(1), similar to
the constant K in Prandtl’s algebraic turbulence model (see Fig. 1).
Eq. (14) holds for channels with large breadth, while Eq. (15) is ex-
pected to be more general.
Based on the aforementioned assumptions, Eq. (4) reduces to

PeL
@eT
@~t
¼ ~ken

@2eT
@~x2 þ

@2eT
@~y2 þ eSf ð16Þ

Solutions of this simple diffusion equation can be sought provided
that ~ken can be estimated, for example with Eq. (14) or Eq. (15). In
the next section, we validate the scale analysis presented above,
and determine the best values for the constants g1 and g2.

4. Results for the freezing duct flow problem

A series of numerical simulations was carried out with the CFD
model for Péclet numbers ranging from 20 to 80 and for aspect ra-
tios of the channel (H/L) ranging from 0.3 to 0.9. These ranges for
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the Pe numbers and H/L ratios guarantee a laminar flow in the
duct.

Similar calculations were performed with the enhanced con-
duction model so as to determine the ~ken-values that yield maxi-
mum solid layer thickness ~smax and mean liquid fraction �f that
match the predictions of the CDF model. As an example, the varia-
tion of the required ~ken-values in terms of the Reynolds number for
an aspect ratio H/L = 0.6 is shown in Fig. 3. Each dot represents the
result of a CFD simulation and the curves are linear regressions
based on these points. One curve is based on the ~smax values while
the other rests on the �f values. Both curves depict a nearly linear
relation between ~ken and Re, as expected from Eq. (14).

The predicted time evolution of the mean liquid fraction �f is
shown in Fig. 4. It is seen that the predictions of the enhanced con-
duction model and that of the CFD simulations are in very good
agreement. These results show that the enhanced conduction mod-
el can handle adequately the convection dominated freezing duct
flow.

One can argue that the enhanced conduction model requires the
use of a CFD code for determining ~ken. In fact, as we have seen (see
Eq. (15)), the scale for ~ken can actually be predicted without recur-
ring to CFD. The adjustment of the constants g1 and g2 simply im-
proves the accuracy of the results. In the present study, it was
found that the ~ken-values of Eq. (15) were best correlated with

g1 ¼ 5:2 and g2 ¼ 1:1 ð17Þ

The R2-factor of the fitting is 0.97. Moreover, it is seen that g1

and g2 are truly of order 1. Therefore, in spite of its relative simplic-
ity, the scaling method proposed in Section 3 provides satisfactory
results for the convection dominated freezing duct flow problem.

Incidentally, in order to reach a steady state solution, a typical
enhanced conduction model simulation performed on a Pentium
3.2 GHz, 1 Go RAM runs approximately 10 times faster than a full
CFD simulation.

5. Test case 2: melting inside an enclosure

The enhanced conduction model was next challenged with
the problem of natural convection dominated melting shown in
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Fig. 4. Time evolution of the averaged liquid fraction predicted by the enhanced
conduction model and by the CFD model.
Fig. 5. A phase change material (PCM) is contained in a two-
dimensional rectangular cavity of height H and length L. The
temperature of the PCM is initially slightly lower than its melt-
ing temperature. The horizontal walls of the enclosure are adia-
batic. At time t = 0, the temperature of the left wall is raised
impulsively to a prescribed temperature above the fusion point
Tw > Ts. As a result, melting of the PCM is triggered. At first, heat
transfer in the melt zone is dominated by conduction. The solid–
liquid interface moves to the right while remaining flat. But
soon, buoyancy-driven convection sets in and more melting
takes place in the vicinity of the top wall. The solid–liquid inter-
face becomes distorted.

This problem was retained due to the fact that it has been stud-
ied extensively in the past and has been used as a benchmark for
comparing numerical methods [20]. A scale analysis is presented
in Ref. [21] and experimental data are available for the melting
of gallium with H = 6.35 cm, L = 8.89 cm, Th = 311 K, T(t = 0) = Tc =
301.3 K [22,23].

Simulations of this melting problem were carried out with the
same CFD code used in test case 1. The accuracy of the computa-
tions was investigated by performing grid and time step refine-
ment studies. Simulations were finally performed with a grid size
comprising 32 � 42 control volumes and a time step of 0.1 s similar
to the parameters reported in Ref. [7].

The strategy retained to augment the conductivity is summa-
rized in Fig. 6. It is observed that initially, heat transfer in the melt
is dominated by conduction, and therefore, no modification of the
conductivity is required. According to Bejan [16,21], convection in
the upper left corner appears when the boundary layer thickness dz

becomes of the same order of magnitude as the thickness of the
molten layers, i.e., when dz � s, as shown in Fig. 5. Here, z is the
height of the convective zone in the upper region of the melt layer.
Considering that dz � zðRazPrÞ�1=4 for a fluid with Pr << 1 such as
gallium, it follows that when dz � s; z scales as

z
H
� s

H

� �4
RaHPr ð18Þ

As a result, Eq. (18) may be used as a criterion to determine
when the convective effects should be included in the model. For
z/H < 1, i.e., for dz < s, heat transfer is dominated by conduction,
and there is no need to enhance the thermal conductivity. On the
other hand, for z/H � 1, convection is triggered and the melt ther-
mal conductivity is augmented accordingly.

The enhancement of k is performed in a z � z squared-shaped
domain located in the upper left corner of the domain which is



Fig. 6. Strategy for predicting the moving solid–liquid interface with the enhanced conduction model.
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equivalent to the so-called ‘‘convective zone” in Ref. [21]. The mod-
ified value of k was chosen so as to mimic the heat flux due to nat-
ural convection in a z � z cavity, i.e q00 ¼ k0DT=z ¼ �hDT. The value of
�h can be estimated with an appropriate correlation for cavities
such as [24],

Nuz ¼ 0:18
Pr

0:2þ Pr
Raz

� �0:29

ð19Þ

which results in an enhanced conductivity of the form

ken � kð1þ NuzÞ or ken ¼ kð1þ gNuzÞ ð20Þ

where g is a constant of order 1, g � O(1), similar to the constant K
in turbulence modeling (see Fig. 1). Note that the actual value of the
enhanced conductivity ken depends on z, which, in turn, is a func-
tion of time. Therefore, ken needs to be updated at every time step.
For simplicity, it is assumed here that the dimension of the convec-
tive zone is equal to the thickness of the melt layer evaluated at the
top of the cavity, i.e., z = s(y = H). Note that if the simulations were
to be performed at later times, that is when the conduction zone
at the bottom left of the cavity has vanished completely, the height
of the convective zone would become z = H and z would be replaced
by H in the Eqs. (18) and (19) for the calculation of the enhanced
conductivity. Here the calculations were conducted in the mixed re-
gime, i.e., the conduction zone at the bottom of the cavity was pres-
ent at all time.
Simulations performed with g set equal to 1 where found to be
satisfactory, i.e., the predictions of the enhanced conduction model
showed a maximum discrepancy of the molten volume fraction of
less than 5% with those of the full CFD predictions. Improved re-
sults were however achieved with an adjusted g-value slightly lar-
ger than one. For instance, the resulting transient solid–liquid
interface positions predicted with g = 1.25 are exemplified in
Fig. 7. It is seen that these results closely match those obtained
with the CFD model. In particular, the distortion of the solid–liquid
interface in the upper region of the cavity is well captured by the
enhanced conduction model, a feature that a constant conductivity
model could not simulate. The main discrepancy between the mov-
ing fronts appears at the bottom of the melt, a region where the en-
hanced conduction model does not apply. Once again, the
computer simulations conducted with the enhanced conduction
model run at least 10 times faster than those of the full CFD
simulations.

The corresponding time evolution of the mean liquid fraction is
depicted in Fig. 8a. This figure reveals a maximum discrepancy of
4% between the predictions of the enhanced conduction model
and the CFD results. Similar observations can be made concerning
the time wise variation of the heat flux at the left boundary
(Fig. 8b).

Finally, let us mention that the ability of the enhanced conduc-
tion model for predicting natural convection dominated melting



Fig. 7. Predicted solid–liquid interface positions obtained with the enhanced
conduction model (broken line) and with the CFD model (solid line).
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was tested for other sets of parameters. In all cases, the results
showed excellent agreement with that of time-consuming CFD
simulations.

6. Concluding remarks

An enhanced thermal conduction model for predicting natural
as well as forced convection dominated solid–liquid phase
change was developed. The main feature of the model is to pre-
dict (1) the overall thermal behavior of the system and (2) the
phase front position without recurring to the full solution of
the Navier–Stokes equations. The model rests entirely on the
conduction equation for both the solid and liquid phases. The ef-
fect of convection in the melt is mimicked via an enhanced con-
ductivity that depends on the dimensionless numbers and the
geometry of the flow.

The model was tested and confronted to full CFD solutions for
a freezing duct flow problem and for buoyancy driven melting in
an enclosure. In both cases, the predictions of the enhanced con-
duction model showed very good agreement with those of the
CFD model. In other words, the enhanced conduction model
can handle adequately convection dominated phase change
problems without the solution of the flow. Not only is the en-
hanced conduction model simpler to implement but its com-
puter simulations run at least ten times as fast as those of the
CFD model. As a result, the enhanced conduction model is well
suited for controlling real-time solid–liquid phase change pro-
cesses that occur in industrial applications as well as in latent
heat thermal energy storage systems.

As a final word, one could always argue that more detailed
CFD simulations or additional experimental data are required
to fine tune the constants in the enhanced conduction model.
We have seen, however, that the magnitude of these constants
is of order one. Moreover, satisfactory results are achieved with
a simple scale analysis only. Adjusting the constants improves
the accuracy of the predictions. One must bear in mind however
that the proposed enhanced conduction model is a conceptual
representation of reality, not reality itself. It was developed spe-
cifically for practical applications that require real-time control
systems, i.e., applications that cannot otherwise rely on time-
consuming CFD simulations.
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